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Main Scope

We develop new field theoretical methods applicable in situations where
conventional perturbative methods (Feynman diagrams) fail.

We mostly work in the framework of the lattice formulation of scalar and
gauge theories, where one has to perform high-dimensional integrations over
fields located at the sites or the links of the lattice.

We use the renormalization group method (which relates the behavior
on small lattices to the behavior on larger lattices) and improve existing
expansions (weak coupling, strong coupling). We try to control the large
field configurations in the multidimensional integrals discussed above.
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Motivations

Today, a quantitative treatment of the large distance effects in Quantum
Chromodynamics (crucial for masses and decay constants) can only be done
with Monte Carlo simulations. We need to go beyond that.

The short distance effects can be described by perturbation theory, however
in recent perturbative QCD calculations, it is not easy to decide if next to
next leading order corrections improve the accuracy of the final result.

The self-interactions of hypothetical scalar particles (Higgs etc..) are likely
to require a treatment beyond perturbation theory.

We expect to bring higher standards of accuracy in quantum field theory
and to be able to make predictions that can be compared with experiments
which emphasize precision (g − 2, hadronic width of the Z, etc...).
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Recent work:

• We Developed modified perturbative methods where we introduce a
large field cutoff and fix this new parameter using the strong coupling
expansion. All the details were worked out in quantum mechanics for the
anharmonic oscillator and for the one plaquette lattice gauge theory.

• We are extending the method to 4-dimensional QCD in the quenched
approximation. We compared series expansions with Monte Carlo results.
We studied the effect of a field cut on the average plaquette.

• We are constructing the nonlinear scaling variables (similar to action-
angle) for renormalization group transformations in scalar field theory.
This allows us to interpolate between regimes where different expansions
are valid.
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Current Plans

• Calculation of the non-perturbative part of the plaquette average in
4D QCD with the new perturbative method.

• Calculation of the 3D critical exponents with a modified Parisi method.

• Analytic methods for the 1/N expansion of the hierarchical model.

• Numerical tests of perturbative triviality and stability bounds for the
Higgs, in the hierarchical approximation.

• Improvement of the hierarchical approximation.
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Graduate Students

My graduate student Li Li earned his Ph. D. last Spring (May 2005).

I recruited a new graduate student, Daping Du, who arrived this Fall.
He started doing calculations related to an optimized perturbative method
in scalar field theory and is helping me to install the parallel computing
software on our new cluster.

In the current year budget (March 2005-February 2006), I have 6.7 months
of support for him and he has to earn the rest by being a Teaching Assistant.
This could be a serious problem next year due to language requirements
imposed by the College for second year graduate students. I request 9
months of support for him for next year (March 2006-February 2007).
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Computational Facilities

In 2003, we built a 16 node cluster that has allowed us to create large
numbers of gauge configurations on lattices with up to 164 sites and to
work on scalar field theory in various dimensions. It was operated by Li Li
who graduated in May 2005.

We have just finished building a new cluster with 8 single CPU nodes with
3.2 GHz Pentium 4 processors and Gigabyte motherboards with a build-in
fast ethernet card. The parallel computing public software Oscar 4.2 is
being installed by Daping Du.

Multiprocessors computers have been build commercially and are low
maintenance items. We request funds to acquire one workstation with
4 CPU units to use for distributed calculations. This type of workstation
costs approximately 5,000 dollars.
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Review Article on Global Aspects of the Renormalization

Group

A proposal for a review article “Global Aspects of the Renormalization
Group Flows of Dyson’s Hierarchical Model” has been accepted by Jour. of
Phys. A. In Spring 2005, I worked on a detailed sketch of the article. It was
forwarded to the Editorial board and received very positive comments. The
expected date of completion is May 2006 .
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Conferences and Workshop

I attended a conference focused on the interface between particle physics
and cosmology (Miami 2004) where I gave a presentation the ”Effects of
Large Field Cutoff in Field Theory”.

A workshop on the recent challenges of lattice field theory was organized
by the Kavli Institute for Theoretical Physics located on the UCSB campus.
Thanks to a faculty scholar award, I was able to participate to the workshop
for three weeks in March 2005. I gave a talk “Role of Large Field
Configurations in Perturbation Theory”. It can be seen and heard online at
http://online.itp.ucsb.edu/online/lattice05/meurice/.

I gave talks at the conference Lattice 2005 held at Trinity College in Dublin
and at Miami 2005.
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Work on Scalar Models

The limitations of perturbation theory are well understood for scalar field
theories. Large field configurations have little effect on commonly used
observables but are important for the average of large powers of the field
and dominate the large order behavior of perturbative series. A simple way
to remove the large field configurations consists in restricting the range of
integration for the scalar fields in the path integral. The method produces
convergent series in nontrivial cases.

The simplest quantum mechanical example where this method can be
applied is the anharmonic oscillator. Recently, we have treated this example
in complete detail. Quantum mechanics can be seen as quantum field
theory with one time dimension and zero space dimension. However, we
will use the usual x notation (instead of φ) in the following.

11



The anharmonic oscillator with a “field” cut xmax

L. Li an Y. Meurice J. Phys. A 38 8139-8153 (2005)

H =
p2

2
+ V (x) ,

with

V (x) =

{

1
2ω

2x2 + λx4 if |x| < xmax

∞ if |x| ≥ xmax

E0(xmax) = ω

∞
∑

k=0

E
(k)
0 (xmax)(λ/ω3)k ,

Rk(xmax) ≡ E
(k)
0 (xmax)/E

(k)
0 (∞) ,
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finite radius of convergence: λc ≃ 65x−6
max

Analytical formulas for the modified coefficients are available for small and
large xmax. At low order, they are valid over a wide range.
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Figure 1: Numerical values of R0(xmax) and R1(xmax) . The solid lines
represent the large xmax expressions. The broken lines represent lowest
orders in the small xmax approximation.
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Universal shape of the modified coefficients as a function of the field cutoff
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Asymptotic data collapse
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Figure 3: Rk(x+x0(k)) for k = 7, . . . 10 and the function Uanh,1(x) .

15



Asymptotically universal behavior for the perturbative coefficients in the
small-large field cutoff crossover

Li and Y. Meurice, J. Phys. A (submitted) hep-th/0507196

ln(R′

k(x)) ≃
Q

∑

q=0

A
(q)
k (x − x0(k))q

A
(2)
k ≃ −1.5(1) + 2.0(1)k−0.6(1) ,

A
(3)
k ≃ 1.3(3)k−0.9(1) .

A
(4)
k ≃ −1.5(6)k−1.3(3)

x0(k) ≃
√

1.6k + 3.5
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Renormalization group picture

The beginning of the series corresponds to the behavior of the scaling
variables near the gaussian fixed point.

The large order, corresponds to the approach of the high-
temperature/strong-coupling fixed point.

The coefficients in the crossover (φmax dependent) correspond to the
crossover in the flows.

Tested using the hierarchical model.
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Optimization

The modified theory with a field cutoff differs from the original theory.
Fortunately, it is possible to adjust the field cutoff to an optimal value in
order to minimize or eliminate the discrepancy with the (usually unknown)
correct value of the observable in the original theory. The strong coupling
can be used to calculate approximately this optimal field cutoff. Examples
can be found in articles published more than a year ago. In some cases,
the expansion has a finite radius of convergence. Techniques to deal with
this problem have been designed by an undergraduate student working in a
R.E.U. program at the University of Iowa this summer 2005 Our next goal
will be to calculate the three-dimensional critical exponents.
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Borel summability of the 1/N-expansion

The large N limit and the 1/N expansion appear prominently in recent
developments in particle physics, condensed matter and string theory. In
order to turn a 1/N expansion into a quantitative tool, we need to: 1)
understand the large order behavior of the series, 2) determine potential
ambiguities of its Borel resummation and 3) compare the accuracy of
various orders with numerical results for various N . We are answering these
three questions for Dyson’s hierarchical model. We provided high-accuracy
numerical values for the critical exponent γ, the subleading exponent ∆
and the critical parameter βc for the 3D O(N) hierarchical nonlinear sigma
models for N up to 20. We are working on two independent methods to
calculate the coefficient of the 1/N expansion of these critical quantities.
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N γ ∆ βc/N

1 1.29914073 0.425946859 1.179030170

2 1.41644996 0.475380831 1.236763288

3 1.52227970 0.532691965 1.275794011

4 1.60872817 0.590232008 1.302790391

5 1.67551051 0.642369187 1.322083069

6 1.72617703 0.686892637 1.336351901

7 1.76479863 0.723880426 1.347244235

8 1.79469274 0.754352622 1.355791342

9 1.81827105 0.779508505 1.362657559

10 1.83722291 0.800424484 1.368284407

11 1.85272636 0.817977695 1.372974325

12 1.86561092 0.832855522 1.376940318

13 1.87646998 0.845589221 1.380336209

14 1.88573562 0.856588705 1.383275590

15 1.89372812 0.866171682 1.385844022

16 1.90068903 0.874586271 1.388107107

17 1.90680338 0.882027998 1.390115936

18 1.91221507 0.888652409 1.391910870

19 1.91703752 0.894584429 1.393524199

20 1.92136121 0.899925325 1.394982051

∞ 2 1 2−c
2(c−1) = 1.42366..
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Work on Lattice Gauge Models

We are extending the method for lattice gauge theories. For compact
groups such as SU(N), the gauge fields are not arbitrarily large. It is
possible to define a sensible theory at negative β = 2N/g2. We plan to
work on the phase diagram for negative coupling for the adjoint part of the
action.

We have compared the effects of local and nonlocal field cuts. For
scalar fields, the configurations can be ranked according to the largest
absolute value of the field or according to the average (so this is non-local
in configuration space) over the sites of an even power of the field. The
largest this power is, the more emphasis is put on the configurations with
the largest field values. We observed correlations among these quantities in
the scalar case.
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We followed the same procedure for lattice gauge models using the
Landau gauge where 1 − (1/N)ReTrUlink plays a role analogous to φ2 in
scalar models. We found correlations between the lattice average of this
quantity and the average action. We found correlations between the average
and the maximum value when the Landau gauge condition is implemented
carefully .
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Figure 5: The picture is the average plaquette as a function of
Max{1 − 1

3ReTrUL}.
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One plaquette LGT

L. Li, Y. Meurice, Phys. Rev. D 71 054509 (2005)

Z(β, N) =

∫

∏

l∈p

dUle
−β(1− 1

N ReTrUp) ,

Z(β, 2) = (2/β)3/21

π

∫ 2β

0

dtt1/2e−t
√

1 − (t/2β)

modified partition function:

Z(β, 2, tmax) = (2/β)3/21

π

∫ tmax

0

dtt1/2e−t
√

1 − (t/2β)
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Z(β, 2, tmax) = (βπ)−3/221/2
∞
∑

l=0

Al(tmax)(2β)−l ,

with

Al(tmax) ≡ Γ(l + 1/2)

l!(1/2 − l)

∫ tmax

0

dte−ttl+1/2 ,

When tmax → ∞ the integral becomes the (complete) Γ function and the
coefficients grow factorially. In lattice perturbation theory, we ”add the
tails”.

Note: tmax = 2β means β-dependent coefficients.

When tmax is finite, the integral is bounded by a power of tmax. When
tmax ≤ 2β, the sum converges.
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The need for interpolation
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Figure 6: P versus β for SU(2) on one plaquette. The solid line represents
the numerical values; the dashed lines on the left, successive orders in the
strong coupling expansion; the dot-dash lines on the right, successive order
in the weak coupling expansion.
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Optimal tmax
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Figure 7: Significant digits obtained from the weak series truncated at order
6, calculating tmax/β using the strong coupling expansion at order 0 to 3,
compared to the weak coupling expansion at order 6 (dotted line W6) and
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it can be extended to 4D where calculations are much harder!
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4D Quenched QCD
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Figure 8: P versus β for SU(3) in 4 dimensions. The solid line represents
the numerical values; the dashed lines on the left, successive orders in the
strong coupling expansion; the dot-dash lines on the right, successive orders
in the weak coupling expansion. P ∼< F a
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aµν >, the non-perturbative

part is often called gluon condensate.
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Discontinuity at g2 → ±0
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Figure 9: MC calculation of the average action density P (β) for SU(2) and
SU(3) L. Li and Y. Meurice, Phys. Rev. D 71 016008 (2005).
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Effect of a gauge invariant cut on P

The effect of the cut is very small but of a different size below, near or
above β = 5.6. The relative change of the configuration average of P when
80 percent of the large field configurations are discarded, for various values
of β in a pure SU(3) LGT on a 84 lattice is shown below (see L. Li and Y.
Meurice, Nucl. Phys. Proc. Suppl. 14 788-790 (2005)).
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Lattice Perturbation Theory

We used the series of Di Renzo et al. for the average plaquette.

P (1/β) =

10
∑

m=0

bmβ−m + . . . .

rm = bm/bm−1, the ratio of two successive coefficients extrapolates near
6 when m → ∞ ). On the other hand, we expect a linear growth for an
asymptotic series.
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Figure 10: Ratios for the 95 and 2000 data (on 84 and 244 lattices).

This suggests P = (1/βc − 1/β)1−α. This implies a massless glueball! (not
seen). No hint of modulations due to complex singularities.
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Series Analysis
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Figure 11: The extrapolated ratios (left) suggests βc ≃ 5.74. The
extrapolated slope (right)suggests −2 + α = −2.08.
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Pnon−pert. = (P − Ppert.) ∝ a4 ∝
(

e−
16π2

33 β

)

Fitting in the interval 5.6 < β < 6.0: Pnon−pert. ≃ 1.2× 1010 × e−
16π2

33 β

5 5.25 5.5 5.75 6 6.25 6.5
BETA

-3

-2.5

-2

-1.5

-1

-0.5

0

l
o
g

1
0

d
e
l
t
a

P
SU3

Figure 12: Log10|P − Ppert.| for order 1 to 10 ; the a4 fit (red).
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Direct Search for Singularities in P ′ and P ′′

−∂P/∂β = (1/Np)[
〈

Σ2
〉

− 〈Σ〉2] , (1)

∂2P/∂β2 = (1/Np)[
〈

Σ3
〉

− 3 〈Σ〉
〈

Σ2
〉

+ 〈Σ〉3] (2)

Loss of precision in the calculation of the higher moments: in −∂P∂β, the
two terms are of order Np but their difference is of order 1. For 104 lattice,
P ′′ will appear in the ninth significant digit and the use of double precision
is crucial.
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the peak disappears on L4 lattices
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Figure 13: First and second derivative of P versus β on L4 lattices. Two
months on a 16 node cluster!
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Figure 14: The Polyakov loop, P , first and second derivative of P versus
β for 44 and 4 × 63 lattices .The peak is related to the finite temperature
transition.
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A simple alternative can be designed by assuming that the critical point
in the fundamental-adjoint plane has mean field exponents and in particular
α = 0. We will further assume an approximate logarithmic behavior

−∂P/∂β ∝ ln((1/βm − 1/β)2 + Γ2) , (3)

on the axis where the adjoint term of the action is zero (the range of
parameters considered here). 1/βm denotes the value where the argument
of the logarithm is maximal on this axis. This implies the approximate form

∂2P/∂β2 ≃ −C
(1/βm − 1/β)

β3((1/βm − 1/β)2 + Γ2)
(4)

The β3 at the denominator ensures that the series starts at β−3.

Fits: βm ≃ 5.78, Γ ≃ 0.006, and C ≃ 0.15
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The variations in the estimation of C (typically |δC| ∼ 0.01) and βm

(typically |δβm| ∼ 0.02) are small. On the other hand, Γ varies more rapidly
under changes of the weights in the χ2 function. We found values of Γ
between 0.003 and 0.007.

The stability of C and βm can be used to set a lower bound on Γ.
Given that the approximate form of ∂2P/∂β2 in Eq. (4) has extrema at
1/β = 1/βm±Γ. As we do not observe values larger than 0.3 near β = 5.75
(see Fig. 13) we get the approximate bound

C

2β3
mΓ

< 0.3 (5)

This implies the lower bound Γ > 0.001. On the other hand, large values
of Γ are also excluded. We never found estimate close to 0.01.
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Small window for a complex singularity

The imaginary part Γ of the location of the singularity in the 1/β = g2/6
plane is

0.001 < Γ < 0.01 . (6)

We also performed calculations with an assumption similar to Eq. (4)
but with ((1/βm−1/β)2+Γ2)1+(α/2) at the denominator, for small positive
and negative values of α. We found very similar ranges of values for the
unknown parameters and we were able to draw very similar conclusions as
for α = 0.

A puzzling aspect of Fig. 13 is that the maximum of the first and
second derivatives are not located near 5.78 but near lower values (5.55
and 5.63 respectively). This can be explained quantitatively from the
non-perturbative part (see hep-lat/0507034)
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Remarks

Good support for “decent flows make decent series”

A lot of work remains to be done: construction of gaussian scaling
variables, optimization methods in presence of complex singularities,
modified coefficients for quenched QCD.

Proving confinement in the continuum limit (β → ∞) can’t be done with
simulations (the physical size of the lattice becomes too small to have large
Wilson’s loops). We need analytical methods. If you can also prove the
existence of a mass gap, you may become a millionaire! (one of the 10
millennium problems of the Clay institute)
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