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Overview

• Our main activity is the development of new field theoretical methods
which can be used in situations where conventional perturbative methods
fail or where lattice methods have a limited accuracy.

• Our long term goal is to bring higher standards of accuracy in quantum
field theory and to be able to make predictions that can be compared
with experiments which emphasize precision (g − 2, hadronic width of
the Z, etc...).

• A central theme in our research program is the interpolation between
scales where different approximations are available (example: Feynman
diagrams at short distance and strong coupling expansion at large
distance).
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Remarks

• A natural tool to interpolate between different scales is the
renormalization group method.

• In order to fully establish a standard model of strong and electroweak
interactions, nonlinear aspects of the renormalization group (related to
confinement, chiral symmetry breaking and mass generation) need to be
understood.

• Nonlinear aspects of the RG flows are difficult and in a first approach
simplified models need to be considered (e. g., Dyson’s Hierarchical
Model).
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Students Involved

• B. Oktay: supported until summer 2001 (Ph. D.); postdoc at the
University of Illinois at Urbana Champaign.

• L. Li: passed the qualifying exam and the comprehensive exam; recipient
of the Goertz-Nicholson award in May 2001; supported by the grant as
a RA; Played a major role in designing and building our 16 node cluster.

• Brian Kessler and Andrew Lytle: undergraduate students; supported by
a Undergraduate Scholar Assistantship from the University (A.L. has
met the 2 year limit); Co-recipients of the Van Allen research award in
summer 2003.
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Computer Facilities: Linux Cluster

• 16 single CPU nodes; 1.6Ghz AMD Athlon XP processor. The maximal
LINPACK performance achieved is 17.95 GFlop (number 8 in 1993!)

• Networking: 10M/100M fast Ethernet on each node. The maximum
bandwidth is 85.08Mbps when the packet size is 49152 bytes, and the
corresponding latency is 0.004408 second.

• Infrastructure paid by the University, computer parts by the D.O.E. .

• Administered by L. Li
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MILC QCD Code Benchmarks
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Figure 1: Comparison with CANDYCANE (16 350MHz nodes, Fast
Ethernet). The problem size is L4.
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1. Interpolation between fixed points of the

renormalization group transformation

• There exists a close connection between statistical mechanics near
criticality and Euclidean field theory in the large cut-off limit (Wilson
71).

• The determination of the renormalized quantities at zero momentum
amounts to the determination of a certain number of parameters
appearing in the scaling laws. Some of these parameters are universal
(the critical exponents) and much effort has been successfully devoted
to their calculation. On the other hand, new techniques need to be
developed in order to reliably calculate the non-universal parameters
(critical amplitudes).
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For values of β slightly smaller than βc, we have

χ(2l)
' (βc − β)−γ2l

[

A
(2l)
0 + A

(2l)
1 (βc − β)

∆

+ A(2l)
per. cos

(

ω ln(βc − β) + φ(2l)
)

+ . . .
]

, (1)

with known parameters γ2l, ∆ (not to be confused with the gap exponent)
and ω. We have calculated these values for the hierarchical model:

γ2l = γ(5l − 3) , (2)

with
γ ' 1.299140730159 (3)

and
∆ ' 0.42595 . (4)
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Example: the renormalized mass

m2
R =

Λ2
Ruγ

A
(2)
0 + A

(2)
1 u∆(ΛR

ΛL
)
2∆
γ + LPC + . . .

(5)

with the log-periodic corrections

LPC = A(2)
per. cos

(

ω

(

lnu +
2

γ
ln

(

ΛR

ΛL

))

+ φ(2)

)

. (6)

– Note that the existence of a limit cycle (effect of the discreteness of the

RG) but A
(2)
per. is very small.

– Recent examples of limit cycles: Braaten et al. PRL 91 102002 (20030);
Glazek and Wilson PRL 89 230401 (2002).

– The amplitudes need to be calculated!
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• The calculation of the critical amplitudes requires a detailed
representation of the RG flows. This is a difficult nonlinear problem. A
common strategy in problems involving nonlinear flows near a singular
point, is to construct a new system of coordinates for which the governing
equations become linear. In the context of the RG, these variables are
called the scaling variables or nonlinear scaling fields.

• We proposed to combine the nonlinear scaling fields associated with
the high-temperature (HT) fixed point, with those associated with the
unstable fixed point, in order to construct the critical amplitudes as RG
invariants

• For more details see: Y. Meurice and S. Niermann, From Nonlinear
Scaling Fields to Critical Amplitudes, J. Stat. Phys. 108, 213 (2002).
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• The construction of the nonlinear scaling fields associated with the HT
fixed point, suffer from an apparent small denominator problem, however
a small numerator mechanism has been observed.

• For detail see: Y. Meurice, Phys. Rev. E 63, 055101 (Rapid
Communication) (2001).

• A general explanation where dimensional regularization is used to observe
the cancellation is given. If log-periodic corrections are neglected, the
dimensionless renormalized coupling constants

ζ(2l)
∝ χ(2l)(βc − λ−L

1 u) m
2l(1+D/2)−D
R . (7)

take universal values (conserved charges).

• For detail see: Y. Meurice, Phys. Rev. E (submitted).
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• The values of the universal couplings have been calculated

2l ζ(2l)?

4 1.505871
6 18.1072
8 579.970

10 35654.
12 3.5777 106

14 5.318 108

16 1.097 1011

18 3.00 1013

20 1.05 1016

• For detail see: Y. Meurice and B. Oktay, U. of Iowa preprint (draft)
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• In the inifinite cut-off limit, the only free parameter is the amplitude of
the 2-point function (predictivity without fine-tuning).

• The values of the coupling appear consistent with the Al! exp(Bl)lC

behavior found in multiparticle production.

• The scaling variables provide very efficient infinite volume extrapolations
(applicable generically).

• A more general discussion of the nonlinear properties of the RG flow will
appear in a review article. A proposal for this review article has been
accepted by Journal of Physics A.
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2. The large-N approach of O(N) sigma models

• The conventional expansion in powers of the field for the critical potential
of 3-dimensional O(N) models in the large-N limit, does not converge
for values of φ2 larger than some critical value.

• Padé approximants [L+3/L] for the critical potential apparently converge
at large φ2. This allows high-precision calculation of the fixed point in a
more suitable set of coordinates.

• We found numerical evidence for conjugated branch points in the complex
φ2 plane (see figure below). Ignoring these singularities may lead to
inaccurate approximations.
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Figure 2: Real and imaginary parts of the roots of the denominator (filled
squares) and numerator (crosses) of a [26/23] Padé approximant for the
critical potential.

• More details in: Y. Meurice, Phys. Rev. D 67 025006 (2003).
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Work in Progress, Plans:

• We have studied the critical properties (fixed points, exponents) of O(N)
hierarchical non linear sigma models at values of N ranging from 1 to
130. This work involved J. J. Godina, B. Oktay and L. Li. We are
presently attempting to determine the first four coefficients of the 1/N
expansion in order to get some idea about the Borel summability of the
series. Preliminary results seem to favor the Borel summability.

• Example:

βc = N
2 − c

2(c − 1)

(

1 −

0.4150

N
+

0.2263

N2
+

0.3233

N3
+

0.3156

N4

)

(8)
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Figure 3: The poles of two Padé approximants for the Borel sum

• We have observed that in a system of coordinates where the unstable
fixed point can be approximated by polynomials, the procedure which
consists in considering bare potential truncated at order (φ2)3 has a low
accuracy.
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• We are planning to investigate if similar problems appear near tricritical
fixed points. In particular, reconsidering the RG flows in a larger space of
bare parameters may affect the generic dimension of the intersections of
hypersurface of various codimensions and help us finding a more general
realization of spontaneous breaking of scale invariance with a dynamical
generation of mass as in the Bardeen-Moshe-Bander mechanism.
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3. Optimized Perturbative Expansions

• For two non-trivial λφ4 problems (anharmonic oscillator and hierarchical
model) improved perturbative series can be obtained by cutting off the
large field contributions.

• The modified series converge to values exponentially close to the exact
ones.

• For λ larger than some critical value, the method outperforms Padé’s
approximants and Borel summations.

• The method can be used for series which are not Borel summable such
as the double-well potential series. (QCD is not Borel summable)
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Figure 4: Number of significant digits for the double-well at order 3 to 6 for
regular perturbation (black) compared to series obtained with ymin = −3
and ymax = 3 (blue) or ymax = 2.5 (green). As the order increases, the
black curves reach the one-instanton contribution (red) over wider regions
to the left while the two other sets reach the accuracy level obtained
numerically for ymax = 3 (purple) or ymax = 2.5 (brown).

• More details in: Y. Meurice, Simple Method to Make Asymptotic Series
of Feynman Diagrams Converge, Phys. Rev. Lett. 88, 141601 (2002).
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• We are developing various methods to calculate the coefficients of the
modified perturbative series.

• Our goal is to obtain more accurate estimates of the critical exponents
in 3 dimensions (using Parisi’s method).

• For one dimensional problems, we found a perturbative version of
the accurate numerical methods which motivated this approach.
(Y. Meurice, Arbitrarily Accurate Eigenvalues for One-dimensional
Polynomial Potentials, J. Phys. A 35, 8831 (2002)).
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• We were able to reproduce these accurate results using the Monte Carlo
method. (L. Li and Y.Meurice, draft in progress)

– We used a mixed (Metropolis+Overrelaxation) method that is very
efficient at small lattice spacing (we want to minimize the CPU time
between uncorrelated configurations).
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Figure 5: The logarithm of the correlation time versus the logarithm of
lattice spacing for the Metropolis and mixed methods.
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– Nonlinear fits to get the continuum limit. Example: the third coefficient;
note the small statistical noise despite two subtractions! (Here the
asymptotic nature of the series is indeed helpful)
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Figure 6: The Monte Carlo result (circles) and fitting result (continuous line)
of ∆E3 when xmax = 2.5. The accurate result of ∆E3 when xmax = 2.5 is
3.649. And the fitting function is 3.730 + 19.25a0.578.
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– Comparison with accurate results
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Figure 7: The comparison of Monte Carlo result (circles) and accurate
numerical results (continuous line), all the values has been divided by their
infinite cut limits
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• For D = 2 and 3, the field cutoff is also a UV cutoff!
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Figure 8: < φ2 > for D = 2
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Optimization:

What is the best field cut?

• For the simple integral

Z(λ) =

∫ +∞

−∞

dφe−(m2/2)φ2−λφ4
. (9)

the perturbative series terminated at even order and calculated with a
field cut φmax provides the exact answer provided that we adjust φmax

properly. The underestimation due to the cut can be compensated by
the overestimation due to the truncation at even order! Approximate
values of φmax can be calculated using the strong coupling expansion
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Figure 9: Significant digits obtained with the optimal cut φmax(λ)
(corresponding to a truncated expansion at order 6 in the weak coupling)
estimated using the strong coupling expansion at orders 0, 1, 2 and 3
(solid lines), compared to significant digits using only the strong coupling
expansion of the integral at the same orders in the strong coupling (dashed
lines) and regular perturbation theory at order 6 (PT6).
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• For detail see: B. Kessler, L. Li and Y. Meurice, Phys. Rev. D. (January
2004), hep-th/0309022.

• Generalization for the ground state of the anharmonic oscillator in
progress. The under/over estimation pattern is more involved.
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Interpolation between the large and small field

(L. Li and Y. Meurice, draft in progress)

Basic idea:

ak(φmax)

ak(∞)
=

∫ φmax

0
dφe−(m2/2)φ2

φ4k

∫ ∞

0
dφe−(m2/2)φ2φ4k

'

∫ φmax

−∞
dφe−(mφ−

√
4k)2

√

π/m2
(10)
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Figure 10: The numerical and fitting ratio of Rk = ak(φmax)
ak(∞) for k from 1

to 10.The line is accurate numerical result. The black circle is the fitting
result.
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Figure 11: Numerical and approximate ratio Rk = bk(xmax)
bk(∞) versus xmax.

The line is the accurate numerical result. The black circles give the
approximate formula for the anharmonic oscillator.
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