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Main Goals

• Development of improved perturbative methods constructed by removing
large field configurations in the path integral and applicable for strong
interactions.

• Understanding of the large order in perturbation for lattice QCD (no
large field confgurations) in terms of the zeros of the partition function.

• Construction of lattice models with reduced finite size effects.

• Improvement of the local potential approximation in renormalization
group equations.
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Recent Results

• Models of the large order behavior of the perturbative expansion of
the average plaquette (the lattice analog of the gluon condensate) in
quenched QCD. The apparent singularities are off the real axis (in the
complex β = 2N/g2 plane; no third-order phase transition). Mean field
theory explains the series up to order 20. Infrared renormalons probably
dominate beyond order 25. Investigation of the zeros of the partition
function for U(1), SU(2) and SU(3) in progress.

• Semi-classical parametrizations of the non-perturbative part of the
plaquette and the β-function in quenched QCD (corrections scale like the
square of the lattice spacing). This suggests a semi-classical approach of
the lattice scaling (to be developed).
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• Universal behavior of the modified perturbative coefficients (calculated
numerically with a large field cutoff) in quantum mechanics and for
the hierarchical model. The computing time necessary to calculate the
perturbative coefficients (with numerical, non-diagrammatic methods)
scales like the order (instead of the factorial of the order for diagrammatic
methods).

• Approximate equivalence between the renormalization group
transformation of the hierarchical model and Polchinski’s renormalization
group equation in the local potential approximation (exponents differ by
less than 10−5). Calculations of the exponents for transformations where
the volume is rescaled by integer values. Continuum limit in progress.

• Numerical calculation of the density of states (”color entropy”) in
lattice gauge theory. Smoother moments with reduced errors and good
agreement with direct MC calculations.
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• New methods to locate zeros of the partition function of U(1) and SU(2)
gauge theories based on interpolations and polynomial approximation of
the color entropy.

• Prescription to control nonlinear effects in Finite Size Scaling (FSS)
(shrinking β interval procedure).

• Approximate equality between the value of β where the double peak
plaquette distribution become symmetric and the real part of the leading
zero of the partition function in the U(1) case
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Recent Publications

1. A. Denbleyker, D. Du, Y. Meurice, and A. Velytsky, Fisher’s zeros of
quasi-Gaussian densities of states, Phys. Rev. D76 116002 (2007),
[arXiv:0708.0438 [hep-lat]].

2. A. Denbleyker, D. Du, Y. Meurice, and A. Velytsky, Fisher’s zeros
and perturbative series in gluodynamics, PoS LAT2007269 (2007)
[arXiv:0710.5771 [hep-lat]].

3. Y. Meurice , QCD at complex coupling, large order in perturbation
theory and the gluon condensate, to appear in Continuous Advances in
QCD 2008 (World Scientific), e-Print: arXiv:0808.2458 [hep-th].

4. A. Denbleyker, Daping Du, Yuzhi Liu, Y. Meurice, and A. Velytsky, Series
expansions of the density of states in SU(2) lattice gauge theory, Phys.
Rev.D78 054503 (2008), e-Print: arXiv:0807.0185 [hep-lat].
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5. A. Denbleyker, Daping Du, Yuzhi Liu, Y. Meurice, A. Velytsky
Approximate forms of the density of states, PoS(LATTICE 2008)249,
e-Print: arXiv:0810.2252 [hep-lat].

6. A. Denbleyker, Daping Du, Yuzhi Liu, Y. Meurice, A. Velytsky .
Volume dependence of Fisher’s zeros PoS(LATTICE 2008)244, e-Print:
arXiv:0810.1792 [hep-lat].

7. Y. Meurice, How to control nonlinear effects in Binder cumulants,
e-Print: arXiv:0712.1190 [hep-lat], expanded version in progress.

8. A. Denbleyker, Daping Du, Yuzhi Liu, Y. Meurice, and A. Velytsky ,
Zeros of the partition function of SU(2) lattice gauge theory, preprint
in progress

9. A. Bazavov, Y. Meurice, and A. Velytsky, Density of states of U(1)
lattice gauge theory, preprint in progress.
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Recent Talks:

• Y. Meurice, Large order, large fields and finite T from lattice QCD at
complex coupling, talk at Miami 2007, December 2007.

• Y. Meurice, QCD at complex coupling, large order in perturbation theory
and the gluon condensate, talk at CAQCD08, Minneapolis , May 2008

• Y. Meurice, Linear and Nonlinear Aspects of Finite Size Scaling, talk at
ERG2008, Heidelberg , July 2008

• Y. Meurice, Series expansions of the density of states in SU(2) lattice
gauge theory, poster presented at ERG2008.

• Y. Meurice, Approximate forms of the density of states in pure gauge,
talk at Lattice 2008, Williamsburg, July 2008.
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• Y. Meurice, Density of States and Fisher Zeros in Lattice Gauge Theory,
talk given at 2008 Midwest Theory Get-Together, October 2008.

• A. Denbleyker and Yuzhi Liu, Volume dependence of Fisher’s zeros,
poster presented at LATTICE 2008.
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Proposal for a KITP program on the Renormalization

Group

Last year, I wrote a solicited review article for Journal of Physics
A “Nonlinear Aspects of the Renormalization Group Flows of Dyson’s
Hierarchical Model”.

The article summarizes recent progress in doing numerical renormalization
group calculations for scalar models. One of the merit of this review article
was to start a dialogue with other authors using different methods where
the renormalization group transformation evolves continuously instead of
discretely as in our method.

This lead me and a few other people to submit a pre-proposal for a KITP
program at UC Santa Barbara on the renormalization group. The director
(David Gross) encouraged us to develop it. We are about ready to submit
it (the deadline is December 15).
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Graduate Student Supervision

I currently supervise four graduated students.

• Daping Du came in fall 2005. He has passed the qualifying exam and
the comprehensive exam. He has passed the T.A. (Teaching Assistant)
certification necessary to lead lab sections. He works on the fits of
plaquette distribution, saddle point estimates of the Fisher zeros and the
density of states in quenched QCD. He is now supported partially as a
T.A. during the academic year and as a R.A. (Research Assistant) during
summer.

• Alan Denbleyker came in fall 2006. He works on MC simulations in
SU(2) gauge theories with and without adjoint terms and is planning
to extend the existing codes for SU(3). He has devised complex zeros
searching algorithm and has calculated the density of state numerically.
Ha has started a study of Binder cumulants in finite temperature SU(2)
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He is the system manager for our cluster and repository. He is supported
as a T.A. during the academic year and as a R.A. during summer.

• Yuzhi Liu came in fall 2006. He has passed the qualifying exam. He
has passed the T.A. certification. He works on the comparison between
discrete renormalization group methods that we have been using and
countinuous limits of these methods used by other authors. He has been
supported partially as a T.A. and partially as a R.A..

• Zou Huyian came in fall 2008. He is now supported as a TA but has
not passed the T. A. certification. He is taking an advanced class in
quantum field theory during his first semester here and is attending our
weekly meetings.
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Computational Facilities

2003: we built a 16 node cluster that has been phased out

2006: we built and operated a new cluster with 8 single CPU nodes with
3.2 GHz Pentium 4 processors and Gigabyte motherboards with a build-in
fast ethernet card.

We would like to upgrade in 2009. The company SiCortex, offers a 72-
processor deskside that uses less than 300 Watts of power (for the entire
deskside!) for $15,000 . The very low cost of operation and the ability to
keep the deskside in a room with no special AC makes it an attractive way
to solve the overcrowding of our departmental cluster room and it is very
likely that we would get overhead return for half of the cost in order to
favor this cost saving initiative.

We use Fermilab cluster (Proposal of type C accepted)
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Work in progress

The density of states and color entropy

The partition function for a SU(2) gauge theory, Z(β), is the Laplace
transform of n(S), the density of states:

Z(β) =

∫ 2Np

0

dS n(S) e−βS ,

where Np = 6×L4 is the number of plaquettes. We define the color entropy

f(x,Np) ≡ ln(n(xNp,Np))/Np
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Figure 1: Weak and strong coupling expansion of f at a few intermediate
orders compared with numerical data (notice nice overlap in central region).
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Figure 2: Comparison of the second and third moment calculated from the
density of states and the direct MC result (Alan Denbleyker).
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Perturbative series in lattice gauge theory and Fisher zeros

Mean field assumption with singularity in the complex plane:

−∂P/∂β ∝ ln((1/βm − 1/β)2 + Γ2) ,

Fisher zeros should stabilize at a distance Γβ2
m from the real axis when the

volume increases.

Large order behavior consistent with P (β) − Ppert.(β) ≃ C(a/r0)
4, with

a(β) defined with the force scale with r0 = 0.5 fm.

C related to the so-called gluon condensate. The present calculation
gives values 3-5 times larger than the values used in the continuum for
phenomelogical purpose.
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Figure 4: Zeros of the real (crosses) and imaginary (circles) using MC on
a 44 lattice, for SU(2) at β0 = 2.18. The values for the real (green) and
imaginary (blue) parts are obtained from a 4 parameter model. 19



Figure 5: Same for a 64 lattice. The region of confidence for MC shrinks
like V −1/2.
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Figure 6: Same quantities on a 44 lattice but with an interpolated version
of f .
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(Daping Du)
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U(1) lattice gauge theory

Data obtained by multicanonical methods by A. Bazavov (Arizona) on
a 44 lattice. A proposal of type C has been approved by Fermilab to pursue
this study on larger lattices.
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Figure 8: Plaquette distribution for U(1) at β=0.978 (olive) , 0.979 (green,
symm.), 0.98, and 0.981 (purple), using the density of states for a 44 lattice.
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Figure 9: Zeros of Re and Im part of Z for U(1) using the density of states
for a 44 lattice. Real part of leading zero is about 0.979.
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Recent work on finite size scaling

fourth Binder cumulant: B4 ≡ <m4>
<m2>2 = f(uκN1/ν, u1N

−ω1, u2N
−ω2, . . . )

B4(β, N) ≃ B4(βc,∞) + f1κN1/ν + f2κ
2N2/ν + (c0 + c1κN1/ν)N−ω .

N is the linear size The shrinking interval procedure.: In the literature, B4
is often plotted for different volumes but at fixed values of β. It is better to
shrink the interval as the volume increases.

|β − β̄c| < ǫ(f1/f2)β̄cN
−1/ν .
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Remarkable crossings

Figure 10: Infinite volume extrapolations of βc and B4 as a function of the
optimization parameter ǫ.
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B4 for Polyakov loop for SU(2) (with A. Velytsky)
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The zero volume limit

B4 = f(uκN1/ν, u1N
−ω1, u2N

−ω2, . . . )

The ωi are widely spaced for the HM

ω1 = 0.655736

ω2 = 3.17995

ω3 = 5.91212

A strategy to get accurate estimates at not too large volume is to try to
fine tune uκ and u1 to the smallest possible values. Fine tuning u1 can be
done by looking for the crossing of the first and second irrelevant directions
at very small volume. This was done for a LG measure.
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Figure 13: ln|B4−2.49641845|, versus n =Log2V . The two lines have slopes
corresponding to the first irrelevant direction and the relevant direction (from
left to right). β was fine tuned with 8 digits.
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Figure 14: ln|B4 − 2.49641845|, versus n =Log2V . The three lines have
slopes corresponding to the second and first irrelevant directions and the
relevant direction (from left to right). β was fine tuned with 8 digits and
λ4 with 3 digits.
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Continuum limit of discrete RG

The recursion formula can be extended for arbitrary scale. The number of
sites integrated for the HM, namely 2, appears as the exponent. With the
replacements 2 → ℓD and c

4 → ℓ−2−D the recursion formula becomes

Rn+1(k) = Cn+1 e
−1

2β ∂2

∂k2

(

Rn(
√

c/4 k)
)2

,

becomes

Rn+1(k) = Cn+1 e
−1

2β ∂2

∂k2

(

Rn(ℓ−(D+2)/2 k)
)ℓD

,

The usual equation is obtained for ℓ = 21/3.
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We are interested in the limit ℓ → 1. Working with the integral form, we
get for V (essentially the log of R, see review)

∂V

∂t
= DV + (1 −

D

2
)φ

∂V

∂φ
− (

∂V

∂φ
)2 +

∂2V

∂φ2
(1)

which implies the so-called Wilson-Polchinski equation

νHM = 0.649570365

νWP = 0.649561773 (Litim; Bervillier, Juttner and Litim)

νoptimal = νWP (Litim)
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Numerical issues

R2 is a very simple multiplication of polynomials (when we use the
polynomial truncation)

When ℓD is not integer, RℓD
needs to be defined by some approximation.

We can use

RℓD
= (1 + (R − 1))ℓD

≃ 1 + ℓD(R − 1) + (1/2!)ℓD(ℓD − 1)(R − 1)2 + . . .

As R − 1 is of order k2, it is consistent to truncate the sum at order
(R − 1)lmax. Usual polynomial approximations do not seem to converge.

34



 1.299

 1.2995

 1.3

 1.3005

 1.301

 1  2  3  4  5  6

γ

ld

fit
γ

γlitim

Figure 15: critical exponents that are numerically stable when the number
of sites blocked is integer. We are working on a perturbative interpolation
method (Liu Yuzhi) .
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