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Main Interests

Main interest: models of strong interactions and lattice models

Applications: QCD and extensions beyond the standard model

Methods: improved perturbation theory and renormalization group methods

Computational facilities: Linux clusters

New computational possibilities being explored: optical lattice realizations
of lattice gauge theory models (if it turns out to be feasible)
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Main Goals

• Development of improved perturbative methods constructed by removing
large field configurations in the path integral and applicable for strong
interactions.

• Understanding of the large order in perturbation for lattice QCD (no
large field confgurations) in terms of the zeros of the partition function.

• Construction of lattice models with reduced finite size effects.

• Improvement of the local potential approximation in renormalization
group equations.

3



Recent Results

• Models of the large order behavior of the perturbative expansion of
the average plaquette (the lattice analog of the gluon condensate) in
quenched QCD. The apparent singularities are slightly off the real axis
(in the complex β = 2N/g2 plane; no third-order phase transition).The
mean field theory model explains the series up to order 30 (Perlt et al.
Lattice 2009). Infrared renormalons could dominate beyond that order.

• Numerical calculation of the density of states (”color entropy”) in in
SU(2) and U(1) (with A. Bazavov) lattice gauge theory. Check of the
moments with direct MC calculations.

• New methods to locate the zeros of the partition function (Fisher’s
zeros) of U(1) and SU(2) gauge theories. Evidence that the lowest

4



zero stabilizes as the volume increases for SU(2). Relation between
symmetric double peak β and real part of zeros of the partition function
in the U(1) case.

• Modification of Dyson’s instability argument for lattice gauge theory with
compact groups and O(N) nonlinear sigma models. Modified dispersion
relations. The zeros of the β function in the complex plane can be seen
as singular points of the mapping between the coupling and the mass
gap. Arguments for stabilization of Fisher’s zeros above the real axis in
the large-N limit. Explicit checks at finite N and volume.

• Method to control nonlinear effects in Finite Size Scaling (FSS).
Improvement of the accuracy of the critical exponents for the finite
temperature transition of SU(2). Corrections to scaling seem dominated
by anisotropic effects (ω ≃ 2).
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• Approximate equivalence between the renormalization group
transformation of the hierarchical model and Polchinski’s renormalization
group equation in the local potential approximation (exponents differ
by less than 10−5). Attempt to interpolate the exponents between
transformations where the volume is rescaled by integer values.
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Recent Publications

• Y. Meurice, The non-perturbative part of the plaquette in quenched
QCD, Phys. Rev. D74, 096005 (2006).

• A. Denbleyker, D. Du, Y. Meurice, and M. Naides, Definition and
parametrization of non-perturbative effects in quenched QCD, PoS
LAT2006 (2006) 215.

• Y. Meurice, At which order should we truncate perturbative series?,
Minneapolis 2006, CAQCD 310-316, World Scientific (2007).

• Y. Meurice, Nonlinear Aspects of the Renormalization Group Flows of
Dyson’s Hierarchical Model, J.Phys. A40 R39-102 (2007) (Sollicited
review article).
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• A. Denbleyker, D. Du, Y. Meurice, and A. Velytsky, Fisher’s zeros of
quasi-Gaussian densities of states Phys. Rev. D76 116002 (2007).

• A. Denbleyker, D. Du, Y. Meurice, and A. Velytsky, Fisher’s zeros and
perturbative series in gluodynamics, PoS LAT2007269 (2007).

• Y. Meurice, QCD at complex coupling, large order in perturbation
theory and the gluon condensate, to appear in CAQCD 2008 (World
Scientific).

• A. Denbleyker, Daping Du, Yuzhi Liu, Y. Meurice, and A. Velytsky, Series
expansions of the density of states in SU(2) lattice gauge theory, Phys.
Rev. D78 054503 (2008).

• A. Denbleyker, Daping Du, Yuzhi Liu, Y. Meurice , and A. Velytsky,
Approximate forms of the density of states PoS(LATTICE 2008)249.
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• A. Denbleyker, Daping Du, Yuzhi Liu, Y. Meurice, and A. Velytsky,
Volume dependence of Fisher’s zeros PoS(LATTICE 2008)244.

• Y. Meurice, Dyson instability for 2D nonlinear O(N) sigma models,
Phys.Rev. D80, 054020 (2009).

• A. Denbleyker, Daping Du, Y. Meurice, and A. Velytsky, Finite
size scaling of Fisher’s zeros for SU(2) pure gauge theory, e-Print:
arXiv:0911.1831 [hep-lat].

• A. Bazavov, A. Denbleyker, Daping Du, Y. Meurice, A. Velytsky,
Haiyuan Zou, Dyson’s Instability in Lattice Gauge Theory e-Print:
arXiv:0910.5785 [hep-lat]
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Recent Talks:

ERG 2006 (Lefkada, Oct. 06), LoopFest VI (Fermilab, Apr. 07), U. Kansas
(Lawrence, Apr. 07), LATTICE 2007 (Regensburg, Aug. 07), XQCD
(Frascati, Aug. 07), Miami 2007 (Dec. 2007), CAQCD (Minneapolis, May
08), ERG 2008 (Heidelberg, July 08), LATTICE 2008 (Williamsburg, July
2008), Midwest Theory Get-Together, (Argonne, Oct. 08 ), Miami 2008,
(Dec. 2008), Large-N workshop (INT Seattle, Feb. 09), CCNY (March
09), Joint Theory Workshop (Argonne, Apr. 09), Lattice 2009 (Beijing,
July 09), Quantum Gauge Theories (San Benet, Sept 09), Midwest Theory
Get-Together, (Argonne, Oct. 09 ).

Recent Talks by Students: D. Du and A. Denblyker (talks at the Summer
School on Lattice QCD, Seattle, Aug. 2007), A. Denbleyker and Yuzhi Liu,
(poster at LATTICE 2008), Yuzhi Liu (poster at LATTICE 2009 and talk at
KITPC), Yuzhi Liu and Haiyuan Zou (talks at APS conference, Nov. 09)
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Conference Organization

• Proposal for a KITP program at UC Santa Barbara on the renormalization
group. The director (David Gross) encouraged us to develop it but it
was not selected.

• New Applications of the Renormalization Group Method, INT
workshop, Feb. 22-26 2010, with M. Birse, and S.-W.Tsai

• Critical Behavior of Lattice Models, Aspen Workshop, May 24 -June
11 2010, with G. Baym, U. Schollwoeck and S.-W. Tsai. Will involve
optical lattice realizations.
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Graduate Student Supervision

• Daping Du came in fall 2005. He has passed the qualifying exam and
the comprehensive exam. He attended a Summer School In 2007 at UW
Seattle. Works on localization of Fisher zeros using the density of states
in SU(2). Supported as a T.A. during the academic year and as a R.A.
(Research Assistant) during summer. Expected graduation: May 2010.

• Alan Denbleyker came in fall 2006. He has passed the qualifying exam.
He attended a Summer School In 2007 at UW Seattle. He works on
MC simulations in SU(2) gauge theories with and without adjoint terms.
He calculates the density of state numerically and studies the Binder
cumulants for finite temperature SU(2). He is the system manager for
our cluster and repository. He is supported as a T.A. during the academic
year and as a R.A. during summer.
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• Yuzhi Liu came in fall 2006. He has passed the qualifying exam.
Attended summer schools at KITPC and Les Houches. He works on
finite size scaling and the comparison between discrete renormalization
group methods that we have been using and countinuous limits of these
methods used by other authors. He has been supported partially as a
T.A. and partially as a R.A.

• Haiyuan Zou came in fall 2008. He has passed the qualifying exam. He
was supported as a TA but has not passed the T. A. certification yet.
He is now supported as RA. He has been taking two advanced class in
quantum field theory. He is working on the mapping between the mass
gap and the coupling constant in the complex plane and the volume
dependence of Fisher’s zeros.
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Computational Facilities

2003: we built a 16 node cluster that has been phased out

2006: we built and operated a new cluster with 8 single CPU nodes with
3.2 GHz Pentium 4 processors and Gigabyte motherboards with a build-in
fast ethernet card.

We would like to upgrade the first cluster keeping the existing rack cabinets.
We have build 4 nodes with quad core processors that are now running
properly and cost $259/node. We would like to add 12 other nodes and
upgrade the switch and UPS batteries.
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One plaquette (SU(2))

Z(β) =
∫ 2

0
dSn(S)e−βS = 2e−βI1(β)/β (analytical in the entire β plane)

n(S) = 2
π

√

S(2 − S) (invariant under S → 2 − S)

The large order of the weak coupling expansion β → ∞ is determined by
the behavior of n(S) near S = 2, itself probed when β → −∞ in agreement
with the common wisdom that the large order behavior of weak coupling
series can be understood in terms of the behavior at small negative coupling.

√
2 − S is easy to approximate near S = 0 (radius of convergence = 2)

Z(β) = (βπ)−3/221/2
∑∞

l=0(2β)−lΓ(l+1/2)
l!(1/2−l)

∫ 2β

0
dte−ttl+1/2 is convergent
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The crucial step

∫ 2β

0
dte−ttl+1/2 ≃

∫ ∞

0
dte−ttl+1/2 +O(e−2β) is responsible for the factorial

behavior

The peak of the integrand crosses the boundary near order 2β

Dropping higher order terms (than order ≃ 2β) agrees with the rule of
thumb (minimizing the first contribution dropped)

The non-perturbative part can be fully reconstructed (higher orders +
”tails”, PRD 74 096005)

For L4 lattices, the crossing is near order 2βNp. Non-perturbative effects
should be explainable by the contributions near Smax which can be probed
at small negative coupling
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Large order behavior of the average plaquette P

The simplest quantity for which the question of the large order behavior
of lattice perturbation theory can be addressed is the weak coupling
expansion of the average plaquette P . Recent numerical calculations of this
expansion for a pure SU(3) lattice gauge theory in 4 dimensions suggest
a nonanalytical power behavior near β = 6/g2 ≃ 5.8. Standard estimators
for the power behavior indicate a singularity in the third derivative of the
free energy. We have shown that the peak in this quantity present on 44

lattices disappears if the size of the lattice is increased isotropically up to a
104 lattice. This together with the absence of massless states for Wilson’s
action in the fundamental representation, can be resolved by moving the
singularity slightly away from the real axis in the complex 1/β plane

We proposed a simple parametrization of the perturbative series based
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on the mean field assumption that ∂P/∂β has a logarithmic singularity in
the complex β plane. After integration, we obtain the expansion

P ≃ A(Li2(β
−1/(β−1

m + iΓ)) + h.c =
∑

k=1

A(β−1/(β−1
m + iΓ))k/k2 + h.c ,

The parameters A and βm can be determined with the numerical values of
the two highest coefficients. For a series up to order 10, the effect of Γ is
undistinguishable from the numerical errors as long as Γ < 0.005. Except
for the first two coefficients, this method provides remarkably accurate
predictions of the other coefficients. Series of order 20-30 are necessary to
resolve Γ (see work in progress).
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Figure 1: ln(bk) for the dilogarithm model (solid line) and the integral
model (dashes). The dots up to order 10 are the known values. The two
models yields similar coefficients up to order 20. After that, the integral
model has the logarithm of its coefficients growing faster than linear.
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This model provides a large order extrapolation of the perturbative
series. It is possible to compare accurate numerical values of P with the
series at successive orders. This is illustrated in Fig. 2. The accumulation
of error curves as the order increases is consistent with

Pnumerical(β) − Pperturbative(β) ≃ C(a/r0)
4

with the nonperturbative corrections to the running of the lattice spacing
a(β) defined with the so-called force scale with r0 = 0.5 fm
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Figure 2: Natural logarithm of the absolute value of the difference between
the series and the numerical value for order 1 to 30 for quenched QCD
with the dilogarithm model. As the order increases, the curves get darker.
The long dash curve is ln(0.65 (a/r0)

4). The solid curve is the two loop

perturbative result ln(3.1 × 108 × (β)204/121−1/2e−(16π2/33)β)

Attempts have been made in the past to relate C to the so-called
gluon condensate. The value that could in principle be compared with the
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commonly used value of 0.012 GeV 4 is (36/π2)Cr−4
0 for Nc = 3. C is

sensitive to resummation. C ≃ 0.6 with the bare series and 0.4 with the
tadpole improved series of P. Rakow. This gives values 3-5 times larger
than the value quoted above. Beside the question of scheme dependence,
the gluon condensate is not an order parameter and it seems difficult to
compare the lattice results with quantities defined in the context of sum
rules. I
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Location of Fisher’s Zeros

The singularities of P appear at the zeros of the partition function in
the β plane called Fisher’s zeros. They can be located by reweighting
the plaquette distribution P (S) generated with the MC method. The
distribution of values of S is approximately Gaussian. This can be used
to define a radius of confidence in the complex β plane that shrinks like
V −1/2. We have developed new methods to find zeros of the partition
that lay outside of the region of confidence of MC calculations. First, we
approximated the plaquette distribution at fixed β by the exponential of a
polynomial of degree 4 (the results are illustrated in Fig. 3) and later we
used the method of the density of state (see c. below).
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Figure 3: Zeros of the real (crosses) and imaginary (circles) using MC on
a 44 lattice, for SU(2) at β = 2.18 and SU(3) at β =5.54. The smaller
dots are the values for the real (green) and imaginary (blue) parts obtained
from the 4 parameter model. The MC exclusion region is represented by
red boxes (see PRD 76 116002)
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There exists a simple relation between the poles of the average plaquette
and the zeros of the partition function. If β0 is a zero of Z of order k, then
(dZ/dβ)/Z ≃ k/(β − β0) for β ≃ β0. If we now integrate over a closed
contour C,

(i2π)−1

∮

C

dβ(dZ/dβ)/Z =
∑

k

nk(C) , (1)

where nk(C) is the number of zeros of order k inside C. Z and its derivative
were calculated using the density of state method explained below. The
accuracy of the above contour integral can be monitored by checking that
the real part is an integer (see left part of Fig. 4). This method was used by
D. Du to locate the boundary of the region where Fisher zeros are present.
(see right part of Fig. 4). These results were presented at Lattice 2009.
Our preliminary results are consistent with a L−2 scaling for Imβ of the
lowest zero.
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integrand oscillate rapidly. A preliminary idea of the distribution of zero
can be obtained using semi-classical methods. Using the “color entropy”
f(s) defined in Eq. (??), the saddle point of the integral is at s0 given by
solving f ′(s0) = β. Z becomes a Gaussian integral with correction of order
√

1/Np as long as Ref ′′(s0) < 0. As a Gaussian density of states has no
complex zeros [?], it seems clear that zeros should appear in regions of the
β plane corresponding to regions of the s plane such that Ref ′′(s0) > 0.
Using Chebyshev approximations of f(s), we have constructed the boundary
(Ref ′′(s) = 0). The results are shown in Fig. 6. The boundary form narrow
tongues ending at a complex zeros of f ′′. These complex zeros are then
mapped in the β plane using f ′. Their number depends on the degree of the
polynomial approximation, but the general shape is robust under changes in
the degree. It appears that in the case of SU(2) the images in the β plane
are never on the real axis in contrast to the case of U(1).
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The density of states and color entropy

.

The partition function for a SU(2) gauge theory, Z(β), is the Laplace
transform of n(S), the density of states:

Z(β) =

∫ 2Np

0

dS n(S) e−βS , (2)

where Np = 6 × L4 is the number of plaquettes. We define the color
entropy f(x,Np) ≡ ln(n(xNp,Np))/Np . A. Denbleyker calculated f
numerically on L4 lattices. Small volume dependence were resolved for
small values of S. We compared f with weak and strong coupling
expansions. Intermediate order expansions show a good overlap for values of
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S corresponding to the crossover (see Fig. 7 , left). We were able to relate
the convergence of these expansions to those of the average plaquette.
When known logarithmic singularities are subtracted from f , expansions
in Legendre polynomials appear to converge uniformly. Subsequently, we
found that discrete Chebyshev approximations of f were the most stable
under numerical fluctuations. This is illustrated in Fig. 7 (right). This
method is being used to find zeros at larger values of the imaginary part of
β as explained in b. .

31



-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f(
x)

x

SU(2) weak and strong coupling 

weak order 3
weak order 4
weak order 5

strong order 2
strong order 4
strong order 6

numerical

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.08  0.09  0.1  0.11  0.12  0.13  0.14  0.15

<
co

s(
β(

S
-<

S
>

))
>

 

Im( β)

4x4x4x4

Monte Carlo
Interpolation

Chebyshev

Figure 7: Weak and strong coupling expansion of f at a few intermediate
orders (left) ; < cos(Imβ(S− < S >)) > as a function of the imaginary
part of β at fixed real part 2.18 with three methods: spline interpolation,
Chebyshev fitting and Monte Carlo on a 44 lattice. The different sets are
obtain by bootstraps.

32



U(1) lattice gauge theory ( A. Bazavov)
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Figure 8: Density of states for U(1) on a 44 lattice by multicanonical
methods.
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0.98 (blue), and 0.981 (purple), using the density of states for a 44 lattice.
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Finite Size Scaling for the deconfinement transition

In the study of the finite temperature phase transition of QCD, it is
important to be able to localize precisely βc and identify the universality
class of the transition. This information can be obtained from the study
of the so-called Binder cumulants of the Polyakov’s loop denoted g4. In
recent studies, we noticed that localizing the intersection of curves at
different volumes using linear fits can lead to inaccuracies. We studied
g4 on Nτ × Nσ

3 lattices for a pure SU(2) gauge theory. A. Denbleyker
used a better β resolution than previous studies in intervals shrinking with
the volume in order to reduce the nonlinear effects. We performed linear
fits of g4 = aL + bLβ around an approximate value of βc that we call
(βc)app for different Nσ(L). We shrink the interval when Nσ increases:

|β − (βc)app| < ǫ × N
(−1/ν)app
σ . ǫ is taken small enough to have negligible

nonlinear corrections, typically 0.02. We can determine 1/ν from the linear
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fit above. bL ≃ f1 ×N
1/ν
σ /βc. The fit have a slight dependence on (βc)app

and L. Liu constructed histograms for different ranges of values.
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Figure 10: Left Fig.: (βc)app changes from 2.297 to 2.301; (1/ν)app changes

from 1.4 to 1.8. 1/ν = 1.570; σ = 0.027. Right Fig.: (βc)app changes from

2.298 to 2.300; (1/ν)app changes from 1.4 to 1.8. 1/ν = 1.571; σ = 0.028.
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Determination of the critical exponent ω Unless we determine βc and
1/ν very precisely, it is very difficult to subtract the effects of the third term
of Eq. (??). If we can work at βc, this term is absent:

g4(βc, Nσ) = g4(βc,∞) + c0N
−ω
σ (3)

Consistently with the previous section and the rest of the literature, we
assume the universal value g4(βc,∞) = 0.46575 as found in Ref. [?].
Log[|g4−g4(βc,∞)|] vs. Log[Nσ] should be linear right at βc and nonlinear
for all the other βs. This is shown in Figure 11. At the same time, the
slope is −ω. The result we obtained from this analysis is ω = 2.030(36).
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This is very different from ωIsing = 0.812 [?]. It is possible that the
coefficient of the N−ω

σ is very small and the exponent we extrapolated
is a sub-subleading exponent. For a detail discussion of the subleading
corrections, see Ref. [?]. The most plausible explanation seems that this
exponent is related to the irrelevant direction associated with the breaking
of rotational symmetry [?] and which is close to 2.
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Work on scalar models

We wrote a review article solicited by J. of Physics A, summarizing
recent progress regarding nonlinear aspects of RG flows for scalar
models in the hierarchical approximation (which can be seen as a local
potential approximation). The review stresses the necessity to find the
connection with methods where the renormalization group transformation
evolves continuously. In the later case, the improvement of the local
potential approximation is well developed and could be compared with the
improvement method of the hierarchical approximation also outlined in the
review article. We have recently designed methods which can interpolate
between the two approaches (with Y. Liu, see below).

We have calculated the critical exponents for a variable number of
blocked sites ℓD (calculations were done for D = 3). The results are
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numerically stable when the number of sites blocked is integer (see Fig.
12 which shows a simple power law.). We are working on an interpolation
method to obtain results in the non-integer case and take the limit of
infinitesimally close to 1.
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Finite size scaling for scalar models

In 2.2.d, we stressed the complications due to nonlinear effects in the
study of Binder cumulants. We studied this problem for the hierarchical Ising
model where the statistical errors are negligible. The order of magnitude of
the nonlinear effects can be estimated from data at relatively small volume.
Using this estimate, we proposed to use linear fits in increasingly small
temperature regions as the volume is increased (rather than using a fixed
temperature interval). The choice of the exact coefficient of proportionality
ǫ (see 2.2.d) can be optimized and reveals remarkable crossing patterns
among estimates illustrated in Fig. 13.
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Figure 13: Infinite volume extrapolations of βc and B4 as a function of
the optimization parameter ǫ. The horizontal line are accurate numerical
values.

43



Dyson instability for 2D nonlinear O(N) sigma models

For lattice models with compact field integration (nonlinear sigma models
over compact manifolds and gauge theories with compact groups) and
satisfying some discrete symmetry, the change of sign of the bare coupling
g2
0 at zero results in a mere discontinuity in the average energy rather

than the catastrophic instability occurring in theories with integration over
arbitrarily large fields. This indicates that the large order of perturbative
series and the non-perturbative contributions for these models should have
unexpected features. Using the large-N limit of 2-dimensional nonlinear
O(N) sigma model, we studied the complex singularities of the average
energy for complex ’t Hooft coupling λt = g2

0N . A striking difference with
the usual situation is the absence of cut along the negative real axis. The
zeros of the partition function can only be inside a clover shape region
of the complex λt plane, or outside a region of the 1/λt plane bounded

44



by 4 approximate hyperboloids and outlined in Fig. . We calculated the
density of states at infinite volume and in the saddle point approximation
and used the result to verify numerically the statement about the zeros.
We proposed dispersive representations of the derivatives of the average
energy for an approximate expression of the discontinuity. The discontinuity
is purely non-perturbative and contributions at small negative coupling in
one dispersive representation are essential to guarantee that the derivatives
become exponentially small when λt → 0+.
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Figure 14: Complex values taken by B(M2) = 1/λt(M2) calculated in the
saddle point approximation when M2 varies over the complex plane (here
on horizontal lines in the M2 plane with spacing 0.1 (black, blue) and 0.5
(gray, orange)). Fisher’s zeros for NV = 100. Zeros of ReZ (small dots,
blue), zeros of ImZ (larger dots). The solid line (blue) is the image of a
horizontal line slightly below the cut in the M2 plane.

In the argument for the absence of Fisher’s zero inside the region bounded
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by the approximate hyperboloids visible in Fig. and in the numerical
determination of the zero above, we have used polynomial approximations
of the density of states at infinite volume. We would like to confirm these
results by taking the limit of large volume of numerical calculations done at
finite volume. This would also help understanding the scaling observed in
the gauge case. This work is being done with H. Zou.
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