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General Motivations

• Large distance effects in QCD (crucial for masses, decay constants and
mixing angles) can only be handled with Monte Carlo simulations, but
getting rid of lattice effects and finite size effects is costly (the “Berlin-
Wall”):

Cost ∝ (Lattice size)5 (Lattice spacing)−7

• The short distance effects in QCD can be described by perturbation
theory (asymptotic freedom), however QCD series diverge fast. For the
hadronic width of the Z0, the term of order α3

s is more than 60 percent
of the term of order α2

s and contributes to one part in 1,000 to the total
width (a typical experimental error at LEP).
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• Next Leading 0rder (NLO) and NNLO corrections can be significant for
processes relevant for the LHC.

For instance, pp → Z+4 jets (Zvi Bern talk at QCD 2006)

For NNLO corrections in LHC processes, see a recent talk of K. Ellis:
http://theory.fnal.gov/people/ellis/Talks/wab.pdf

Nobody knows if the next order will improve or worsen the accuracy!

(And such calculations can take years!)

• The experimental error bars of the anomalous magnetic moment of
the the muon aµ have been shrinking. We are reaching the limit
of perturbative accuracy in theoretical estimates. Precision tests may
become a major source of information regarding new laws of nature in
the long term.
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Quantity 1990 Value 2001 Value Change

(×1011) (×1011) (×1011)
aQED

µ 116 584 695.5(5.4) 116 584 705.7(2.9) +10.2
aHad

µ (vac. pol 1) 7 068(59)(164) 6 924(62) −144
aHad

µ (vac. pol 2) -90(5) -100(6) −10
aHad

µ (light by light) 49(5) -85(25) −134
aEW

µ (1 loop) 195(10) 195(10) 0
aEW

µ (2 loop) — −43(4) −43

aSM
µ (total) 116 591 918(176) 116 591 597(67) −321

Table 1: Improvements in the theoretical calculation of aµ from 1990 to
2001. The major shifts were primarily due to errors in the earlier calculations,
new calculations of higher order effects, improved e+e− → hadrons and tau
data, and additional utilization of perturbative QCD. (From W. Marciano,
hep-ph/0105056)
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Figure 1: Measurements of aµ by E821 with the SM predictions (Bennett
et al., Phys. Rev. Lett. 92 161802 (2004); hep-ex/0401008).
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• Perturbation theory imposes stability and triviality bounds on the Higgs
mass mH. If we believe these perturbative bounds, mH should be in
a small window near mH = 175 GeV , unless there is new physics at a
scale Λ (see Figure below from T. Hambye and K. Riesselmann, Phys.
Rev. D 55, 7255, 1997). However, these bounds probably reflect the
failure of perturbation theory (K. Holland, Lattice 2004)

5



Summary

• There is an urgent need to develop new analytical methods based on
weak coupling perturbative expansions, but modified in such way that
they can be extended beyond the range of conventional methods.

• The main problem of perturbation theory is that it cannot succesfully
handle large quantum fluctuations (the large field contributions in the
path integral).

• The large field configurations become important in the crossover region
between weak and strong coupling (the region of interest for QCD!).

• The renormalization group method is essential to make calculations in
the crossover region.
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Main Scope of our Effort

• We develop new field theoretical methods applicable in situations where
conventional perturbative methods (Feynman diagrams) fail.

• We mostly work in the framework of the lattice formulation of scalar and
gauge theories (where numerical tests are possible).

• We improve existing expansions (weak coupling, strong coupling) by
controlling the large field configurations.

• We use the renormalization group method (which relates the behavior
on small lattices to the behavior on larger lattices) whenever possible.
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Big Goals

• “User friendly” modified Feynman rules for the standard model.

• Ab initio calculations justifying the phenomenological successes of
Operator Product Expansion based approaches (relying on the gluon
condensate).

• Generic numerical methods based on the renormalization group and
applicable for scalar models (calculation of exponents, tests of
triviality/stability bounds).
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Recent Accomplishments

• Understanding of the large order behavior of the perturbative expansion
of the average plaquette (the lattice analog of the gluon condensate)
in quenched QCD. The apparent singularities are off the real axis (no
third-order phase transition). Mean field theory explains the series up to
order 20. Infrared renormalons probably dominate beyond order 25.

• Semi-classical parametrizations of the non-perturbative part of the
plaquette and the β-function in quenched QCD.

• Universal behavior of the modified perturbative coefficients (calculated
numerically with a large field cutoff) in quantum mechanics.
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• Numerical treatment of the crossover between two fixed points of the
renormalization group transformation of the hierarchical model (accurate
calculation of non-universal renormalization group invariants).

• Approximate equivalence between the renormalization group
transformation of the hierarchical model and Polchinski’s equation in
the local potential approximation (exponents differ by less than 10−5).

• Numerical calculation of critical effective potentials and understanding
of their complex singularities.
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Recent Publications

1. Y. MEURICE, The non-perturbative part of the plaquette in pure gauge
theory, Phys.Rev. D 74, 096005, 2006.

2. L. LI, and Y. MEURICE, About a possible 3rd order phase transition at
T=0 in 4-D gluodynamics, Phys.Rev. D 73, 036006, 2006.

3. J. J. GODINA, L. LI, and Y. MEURICE and M. B. OKTAY, High-accuracy
critical exponents of O(N) hierarchical sigma models, Phys.Rev. D 73,
047701, 2006.

4. L. LI, and Y. MEURICE, Asymptotically universal crossover in
perturbation theory with a field cutoff, J.Phys. A 39, 8681, 2006.

5. L. LI, and Y. MEURICE, A tractable example of perturbation theory with
a field cutoff: The anharmonic oscillator, J. Phys. A 38, 8139, 2005.
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6. L. LI, and Y. MEURICE, An Example of Optimal Field Cut in Lattice
Gauge Perturbation Theory, Phys. Rev. D 71, 054509, 2005.

7. L. LI, and Y. MEURICE, Lattice Gluodynamics at Negative g2, Phys.Rev.
D 71, 016008, 2005.

8. Y. MEURICE, and M. B. OKTAY, Universality in Nontrivial Continuum
Limits: a Model Calculation, Phys.Rev. D 69, 125016 , 2004.

9. Y. MEURICE, Small Numerators Canceling Small Denominators of The
High Temperature Scaling Variables, Phys.Rev. E 69, 056108, 2004.

10. B. KESSLER, L. LI, and Y. MEURICE, New Optimization Methods for
Converging Perturbative Series with a Field Cutoff, Phys.Rev. D 69,
045014 1-8, 2004.
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Recent Talks:

1. A. DENBLEYKER, D. DU, Y. MEURICE (presenting author), and M.
Naydes, Definition and parametrization of non-perturbative effects in
quenched QCD, Lattice 2006, Tucson, Proc. of Sc. LAT2005:215, 2006.

2. Y. MEURICE, A RG analysis of the interpolation between weak
and strong coupling, Talk given at the 3rd Conference on the
Exact Renormalization Group, Lefkada, Greece, September 2006,
http://www.cc.uoa.gr/ papost/Meurice.pdf

3. Y. MEURICE, At Which Order Should we Truncate Perturbative Series?
Talk given at Continuous Advances in QCD 2006, Minneapolis, May
2006, hep-th/0608097.
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4. Y. MEURICE, Interpolation between weak and strong coupling of
the plaquette in quenched QCD, Talk given at the ECT, Trento,
March 2006, http://www.ect.it/Meetings/ConfsWksAndCollMeetings/
ConfWksDocument/2006/Talks/27-31March/meurice.pdf .

5. Y. MEURICE, Improving the accuracy of perturbative calculations by
using a large field cutoff, Talk given at the Univeristé Catholique de
Louvain, March 2006.

6. Y. MEURICE, Improving the accuracy of perturbative calculations by
using a large field cutoff, Talk given at the Univeristé Libre de Bruxelles,
March 2006.

7. Y. MEURICE, Large order behavior of series and global RG flows, talk
given at Miami 2005, Miami, December 2005.
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8. L. LI, and Y. MEURICE (presenting author), Is there a 3rd order phase
transition in 4D gluodynamics?, Lattice 2005, Trinity College, Dublin,
Proc. of Sc. LAT2005:258,2006 .

9. L. LI, and Y. MEURICE (presenting author), Effects Of Large Field
Cutoffs In Scalar And Gauge Models, Nucl. Phys. Proc. Suppl. 140
(2005) 788–790.

10. Y. MEURICE, Effects of Large Field Cutoffs in Lattice Gauge Theory,
talk given at Miami 2004, http://server.physics.miami.edu/ curtright/
Miami2004/Meurice.html.

11. Y. MEURICE, Role of Large Field Configurations in
Perturbation Theory, Challenges of LFT, KITP, March 2005,
http://online.itp.ucsb.edu/online/lattice05/meurice/ .
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12. , Y. MEURICE, Effects of Large Field Cutoffs in Scalar and Gauge
Theories, Talk given at Washington University, October 2004.

13. L. LI and Y. MEURICE (presenting author), Large Field Cutoffs in LGT,
hep-lat/0411020; Workshop on QCD in Extreme Environments, Argonne
Nat. Lab., June 2004.

14. L. LI and Y. MEURICE (presenting author), Limit Of Perturbative
Coefficients Calculated With A Large Field Cutoff, Fermilab, June 2004,
Nucl.Phys.Proc.Suppl.129:883-885, 2004.
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Review Article (in progress)

A proposal for a review article “Global Aspects of the Renormalization
Group Flows of Dyson’s Hierarchical Model” has been accepted by Jour.
of Phys. A. A detailed sketch of the article was forwarded to the Editorial
board and received positive comments. 50 pages written up to now. The
expected date of completion is December 2006 .
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Undergraduate Student Involvement:

We insist on involving undergraduates in our research. Our supervised
undergraduates go to top graduate schools. We also supervise summer
students from other universities (REU organized by Prof. Reno).

• B. Kessler (B. S. 2004, now at UC Berkeley as a grad. student, Van
Allen Research Award recipient)

• A. Lytle (B. S. 2004, now at UW Seattle as a grad. student, Van Allen
Research Award recipient)

• J. Cook (B. S. 2005, REU student in 2004, now at UI Urbana-Champaign
as a grad. student, Van Allen Research Award recipient)
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• M. Snyder (B. S. 2006 from Elon University, REU student in 2005, now
at NC State as a grad. student)

• A. Denbleyker (B. S. 2006, now in our department as a grad. student,
Van Allen Research Award recipient)

• M. Naides (B. S. expected in 2008 from Cornell U at Ithaca, REU student
in 2006)
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Graduate Students Involvement:

We support graduate students with a mixture of teaching assistantships and
research assistantships.

Recent Ph. D.:

• B. Oktay (Ph. D. 2001; postdoc at University of Illinois at
Urbana Champaign; now postdoc at Trinity College, Dublin; current
collaborator).

• L. Li (Ph. D. 2005; recipient of the Goertz-Nicholson award in May
2001; employed by Apache Design in Mountain View, California)
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Current students

• Daping Du (came in 2005, passed the qualifier exam, TA/RA)

• Alan Denbleyker (new graduate student in 2006, TA)

• Liu Yuzhi (new graduate student in 2006, TA)

The University has strict requirements regarding the oral competency of
graduate students employed as Teaching Assistant beyond the first year. In
the past three years, three of our graduate students were unable to pass the
test before the end of the first year.

We would like to send some students to the Lattice Summer School in
Seattle in August 2007 or TASI 2007.
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Computational Facilities

In 2003, we built a 16 node cluster that has allowed us to create large
numbers of gauge configurations on lattices with up to 164 sites and to
work on scalar field theory in various dimensions. Due to several recent
hardware failures, this cluster will be phased out.

We have built a new cluster with 8 single CPU nodes with 3.2 GHz Pentium4
processors and Gigabyte motherboards with a build-in fast ethernet card.
It is now being reconfigured with Oscar 5.0 (released this month) on
openSUSE 10.0.

Multiprocessors computers have been build commercially and are low
maintenance items. We would like to try 4 CPU units to use for distributed
calculations. This type of workstation costs approximately 5,000 dollars.
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Basic ideas (scalar case)

∫ +∞

−∞

dφe−
1
2φ2

−λφ4
6=

∞
∑

0

(−λ)l

l!

∫ +∞

−∞

dφe−
1
2φ2

φ4l (1)

The peak of the integrand of the r.h.s. moves too fast when the order
increases. On the other hand, if we introduce a field cutoff, the peak moves
outside of the integration range and

∫ +φmax

−φmax

dφe−
1
2φ2

−λφ4
=

∞
∑

0

(−λ)l

l!

∫ +φmax

−φmax

dφe−
1
2φ2

φ4l (2)

General expectations: for a finite lattice, the partition function Z calculated
with a field cutoff is convergent and ln(Z) has a finite radius of convergence.
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One plaquette LGT

Z(β, N) =

∫

∏

l∈p

dUle
−β(1− 1

N ReTrUp) ,

Z(β, 2) = (2/β)3/21

π

∫ 2β

0

dtt1/2e−t
√

1 − (t/2β)

modified partition function:

Z(β, 2, tmax) = (2/β)3/21

π

∫ tmax

0

dtt1/2e−t
√

1 − (t/2β)
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Z(β, 2, tmax) = (βπ)−3/221/2
∞
∑

l=0

Al(tmax)(2β)−l ,

with

Al(tmax) ≡
Γ(l + 1/2)

l!(1/2 − l)

∫ tmax

0

dte−ttl+1/2 ,

When tmax → ∞ the integral becomes the (complete) Γ function and the
coefficients grow factorially. In lattice perturbation theory, we ”add the
tails”.

Note: tmax = 2β means β-dependent coefficients.

When tmax is finite, the integral is bounded by a power of tmax. When
tmax ≤ 2β, the sum converges.
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The need for interpolation
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Figure 2: P versus β for SU(2) on one plaquette. The solid line represents
the numerical values; the dashed lines on the left, successive orders in the
strong coupling expansion; the dot-dash lines on the right, successive order
in the weak coupling expansion.
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Optimal tmax
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Figure 3: Significant digits obtained from the weak series truncated at order
6, calculating tmax/β using the strong coupling expansion at order 0 to 3,
compared to the weak coupling expansion at order 6 (dotted line W6) and
the strong coupling expansion at order 0 to 2 (empty circles SC). Hopefully
it can be extended to 4D where calculations are much harder!
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4D Quenched QCD
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Figure 4: P versus β for SU(3) in 4 dimensions. The solid line represents
the numerical values; the dashed lines on the left, successive orders in the
strong coupling expansion; the dot-dash lines on the right, successive orders
in the weak coupling expansion. P ∼< F a

µνF
aµν >, the non-perturbative

part is often called gluon condensate. (β = 6 corresponds to 0.1 fermi).

28



Discontinuity at g2 → ±0
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Figure 5: MC calculation of the average action density P (β) for SU(2) and
SU(3). Does the gap control the large order behavior? (Daping Du)
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Effect of a gauge invariant cut on P

The effect of the cut is very small but of a different size below, near or
above β = 5.6. The relative change of the configuration average of P when
80 percent of the large field configurations are discarded, for various values
of β in a pure SU(3) LGT on a 84 lattice is shown below (this illustrates
the sensitivity to large field configurations in the crossover region).
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Singularities in the complex coupling plane

Series analysis suggest a nonanalytical power behavior near β = 6/g2 ≃ 5.8
with a specific heat exponent α ≃ −0.1 and an (unexpected) singularity in
the second derivative of P , or in other words in the third derivative of the
free energy (third order phase transition).

The peak in the third derivative of the free energy present on 44 lattices
disappears if the size of the lattice is increased isotropically up to a 104

lattice . On the other hand, on 4 × L3 lattices, a jump in the third
derivative persists when L increases. Its location coincides with the onset
of a non-zero average for the Polyakov loop and the known location of the
finite-temperature transition.

The absence of evidence for a peak with height increasing with the volume
on isotropic lattices and the absence of massless states for Wilson’s action in
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the fundamental representation, can be resolved by moving the singularity
in the complex 1/β plane. If the imaginary part of the location of the
singularity Γ is within the range 0.001 < Γ < 0.01, it is possible to limit
the second derivative of P within an acceptable range without affecting
drastically the behavior of the perturbative coefficients.
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Figure 6: Second derivative of P versus β for 44, 64, 84 and 104 lattices.
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Searches for zeroes of the partition function

Alan Denbleyker has searched for the zeroes of the partition function in
the complex β plane by using the reweighting method. The bounds in the
1/β plane discussed above imply that the the location of the zero closest to
the positive real axis in the β plane should have an imaginary part between
0.03 and 0.3 when the volume becomes large enough. If the imaginary part
is larger than K

√

ln(Nconf.)/V with Nconf. the number of configurations
and K a calculable function of the real part of order 1 varying slowly, the
determination of the zeroes becomes inaccurate. For small volume (44),
we were able to establish the existence of a zero clearly within the radii of
confidence of various reweighting near β = 5.55 ± i0.1 in agreement with
results on 4L3 lattices. For larger (64 and 84) lattices, we have not found
zeroes clearly within the radii of confidence. Up to now, everything seems
consistent with the bound |Imβ| > 0.03.
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Figure 7: Zeroes of the partition function in the complex β plane for a 84

lattice. The dots correspond to distinct bootstraps and the solid lines to
the radii of confidence.
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Effect of adjoint term in the action (in collaboration with A. Velytsky
(UCLA)).
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Definition and parametrization of the non-perturbative

part of the plaquette

Non-perturbative effects are often invoked in phenomenological
applications. Successful examples can be found in SVZ sum rule calculations.
In this approach, the gluon condensate plays an important role. In lattice
gauge theory, numerical non-perturbative calculations are possible, however
the notion of gluon condensate is sometimes a source of controversy in part
because the separation between perturbative and non-perturbative part is
ambiguous. We have studied a particular type of separation with various
examples. We defined the non-perturbative part of a quantity as the
difference between its numerical value and the perturbative series truncated
by dropping the order of minimal contribution and the higher orders. For
the anharmonic oscillator, the double-well potential and the single plaquette
gauge theory, the non-perturbative part can be parametrized as A λB e−C/λ
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and the coefficients A, B and C can be calculated analytically. For lattice
QCD in the quenched approximation, the perturbative series for the average
plaquette is dominated at low order by a complex singularity in the complex
coupling plane and the asymptotic behavior can only be reached by using
extrapolations. The first extrapolation is based on the mean field assumption
that the pseudo specific heat has a logarithmic singularity in the complex β
plane. Integrating, we obtain

∑

k=1

akβ
−k ≃ C(Li2(β

−1/(β−1
m + iΓ)) + h.c , (3)

For the intermediate allowed value Γ = 0.003, C = 0.0654 and βm=5.787
yield exact values for coefficients 9 and 10. Except for the first term, the
agreement with the other coefficients is very good. The fact that such
a good agreement can be reached by tuning two parameters begs for a
diagrammatic explanation! This extrapolation (and another one based on
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IR renormalons dominance) that provide a consistent description of the
series up to order 20-25, favor the idea that the non-perturbative part is a
power of the force scale (S. Necco and R. Sommer, Nucl. Phys. B662, 328,
2002). We proposed a parametrization of the force scale as the two loop
universal terms with exponential corrections.
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Work on Scalar Models

The limitations of perturbation theory are well understood for scalar field
theories. Large field configurations have little effect on commonly used
observables but are important for the average of large powers of the field
and dominate the large order behavior of perturbative series. A simple way
to remove the large field configurations consists in restricting the range of
integration for the scalar fields in the path integral. The method produces
convergent series in nontrivial cases.

The simplest quantum mechanical example where this method can be
applied is the anharmonic oscillator. Recently, we have treated this example
in complete detail. Quantum mechanics can be seen as quantum field
theory with one time dimension and zero space dimension. However, we
will use the usual x notation (instead of φ) in the following.
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The anharmonic oscillator with a “field” cut xmax

H =
p2

2
+ V (x) ,

with

V (x) =

{

1
2ω

2x2 + λx4 if |x| < xmax

∞ if |x| ≥ xmax

E0(xmax) = ω

∞
∑

k=0

E
(k)
0 (xmax)(λ/ω3)k ,

Rk(xmax) ≡ E
(k)
0 (xmax)/E

(k)
0 (∞) ,

finite radius of convergence: λc ≃ 65x−6
max
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Universal shape of the modified coefficients as a function

of the field cutoff
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Figure 10: Rk(xmax) = E
(k)
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(k)
0 (∞) for k going from 1 to 10.
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Asymptotic data collapse
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Figure 11: Rk(x+x0(k)) for k = 7, . . . 10 and the function Uanh,1(x) .
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