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General Motivations

• Large distance effects in QCD (crucial for masses, decay constants and
mixing angles) can only be handled with Monte Carlo simulations, but
getting rid of lattice effects and finite size effects is costly (the “Berlin-
Wall”):

Cost ∝ (Lattice size)5 (Lattice spacing)−7

• Finite Size Scaling (FSS) is essential to extrapolate the properties of
the QCD finite temperature phase transition to infinite volume using
numerical data on small lattices. Nonlinear effects in FSS can be
important at sufficiently large volume. It is difficult to distinguish these
effects from the statistical errors. There is not much numerical evidence
that the predictions of the linear FSS are well obeyed at large volume.
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• The short distance effects in QCD can be described by perturbation
theory (asymptotic freedom), however QCD series diverge fast. For the
hadronic width of the Z0, the term of order α3

s is more than 60 percent
of the term of order α2

s and contributes to one part in 1,000 to the total
width (a typical experimental error at LEP). Next Leading 0rder (NLO)
and NNLO corrections can be significant for processes relevant for the
LHC (for instance, pp → Z+4 jets). Nobody knows if the next order will
improve or worsen the accuracy! (And such calculations can take years!)

• The experimental error bars of the anomalous magnetic moment of
the the muon aµ have been shrinking. We are reaching the limit
of perturbative accuracy in theoretical estimates. Precision tests may
become a major source of information regarding new laws of nature in
the long term.
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• Perturbation theory imposes stability and triviality bounds on the Higgs
mass mH. If we believe these perturbative bounds, mH should be in a
small window near mH = 175 GeV , unless there is new physics at a scale
Λ (see T. Hambye and K. Riesselmann, Phys. Rev. D 55, 7255, 1997).
However, these bounds probably reflect the failure of perturbation theory
(K. Holland, Lattice 2004)
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Summary

• There is an urgent need to develop new analytical methods based on
weak coupling perturbative expansions, but modified in such way that
they can be extended beyond the range of conventional methods.

• The main problem of perturbation theory is that it cannot successfully
handle large quantum fluctuations (the large field contributions in the
path integral). The large field configurations become important in the
crossover region between weak and strong coupling (at zero temperature)
and near the critical coupling (at finite temperature).

• The renormalization group method (including FSS) is essential to
make calculations in the crossover region (at zero temperature) and
to understand the finite temperature phase transition.
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Recent Accomplishments

• Understanding of the large order behavior of the perturbative expansion
of the average plaquette (the lattice analog of the gluon condensate) in
quenched QCD. The apparent singularities are off the real axis (in the
complex β = 2N/g2 plane; no third-order phase transition). Mean field
theory explains the series up to order 20. Infrared renormalons probably
dominate beyond order 25.

• Semi-classical parametrizations of the non-perturbative part of the
plaquette and the β-function in quenched QCD. This suggests a semi-
classical approach of the lattice scaling.

• Universal behavior of the modified perturbative coefficients (calculated
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numerically with a large field cutoff) in quantum mechanics and for the
hierarchical model.

• Approximate equivalence between the renormalization group
transformation of the hierarchical model and Polchinski’s renormalization
group equation in the local potential approximation (exponents differ by
less than 10−5).

• Numerical calculation of critical effective potentials and understanding
of their complex singularities for scalar and gauge models.

• New methods to locate zeros of the partition function.

• New method to control nonlinear effects in Finite Size Scaling (FSS).
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Recent Publications

1. Y. MEURICE, How to control nonlinear effects in Binder cumulants,
preprint in first draft stage (content discussed in coming slides).

2. A. DENBLEYKER, D. DU, Y. MEURICE, and A. VELYTSKY, Fisher’s
zeros in SU(2) and SU(3) gluodynamics, preprint in progress(content
discussed in coming slides).

3. A. DENBLEYKER, D. DU, Y. MEURICE, and A. VELYTSKY, Fisher’s
zeros of quasi-Gaussian densities of states, Phys. Rev. D76, in press
(2007), [arXiv:0708.0438 [hep-lat]].

4. A. DENBLEYKER, D. DU, Y. MEURICE, and A. VELYTSKY, Fisher’s
zeros and perturbative series in gluodynamics, PoS LAT2007269
(2007) [arXiv:0710.5771 [hep-lat]].
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5. Y. MEURICE, Nonlinear Aspects of the Renormalization Group Flows
of Dyson’s Hierarchical Model, J.Phys. A40 R39-102 (2007), [hep-
th/0701191]; solicited topical review.

6. Y. MEURICE, At which order should we truncate perturbative series?,
Published in Minneapolis 2006, Continuous advances in QCD 310-316,
World Scientific (2007), [hep-th/0608097].

7. Y. MEURICE, The non-perturbative part of the plaquette in quenched
QCD, Phys. Rev. D74, 096005 (2006), [hep-lat/0609005].
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Recent Talks:

1. Y. MEURICE, Fishers Zeros at Zero and Finite Temperature, QCD in
extreme conditions,
http://www.lnf.infn.it/conference/xqcd2007/Talks/Meurice.pdf

2. Y. MEURICE, Fisher’s Zeros and Perturbative Series in Gluodynamics,
LATTICE 2007, http://www.physik.uni-regensburg.de/lat07/hevea/meurice.pdf

3. Y. MEURICE, Convergent multiloop expansions, LoopFest VI,
http://ubpheno.physics.buffalo.edu/%7Edow/loopfest6/meurice.pdf

4. Y. MEURICE, Convergent Multilooop Expansion, talk given at the
University of Kansas at Lawrence, April 22 2007.
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5. Y. MEURICE, A RG analysis of the interpolation between weak
and strong coupling, 3rd International Conference on the Exact
Renormalization Group, Lefkada (Greece), September 2006.
http://www.cc.uoa.gr/ papost/Meurice.pdf

6. D. DU, Fisher Zeros in SU (2) Lattice Gauge Theory, talk given at the
International Summer School on Lattice QCD, Seattle, August 2007.

7. A. DENBLEYKER, MC Studies of Fisher Zeros in Spin and Gauge
Models, poster presented at the International Summer School on Lattice
QCD, Seattle, August 2007 .
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Completion of a Review Article on the Renormalization

Group

After more than one year of work, the solicited review article “Nonlinear
Aspects of the Renormalization Group Flows of Dyson’s Hierarchical Model”
has been completed, accepted and published as topical review by Jour. of
Phys. A. in spring 2007. The article summarizes recent progress in doing
numerical renormalization group calculations for scalar models. One of the
merit of this review article was to start a dialogue with other authors using
different methods where the renormalization group transformation evolves
continuously instead of discretely as in our method. We have recently
designed methods which can interpolate between the two approaches (with
Y. Liu). I have started a detailed study of Finite Size Scaling (FSS) in this
model.
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Graduate Student Supervision

In recent years, I made a special effort to recruit high quality graduate
students. The University has strict requirements regarding the oral
competency of graduate students employed as Teaching Assistant beyond
the first year. In the past three years, three of our graduate students were
unable to pass the test before the end of the first year. I currently supervise
three graduated students.

• Daping Du came in fall 2005. He has passed the qualifying exam and the
comprehensive exam. He has not passed the T.A. (Teaching Assistant)
certification necessary to lead lab sections. He works on the fits of
plaquette distribution, saddle point estimates of the Fisher zeros and the
density of states in quenched QCD. He has been supported partially as a
T.A. (as grader) and partially as a R.A. (Research Assistant).

13



• Alan Denbleyker came in fall 2006. He works on MC simulations in
SU(2) gauge theories with and without adjoint terms and is planning
to extend the existing codes for SU(3). He has devised complex zeros
searching algorithm. He is the system manager for our cluster and
repository. He has been supported as a T.A.

• Yuzhi Liu came in fall 2006. He has passed the qualifying exam. He has
not passed the T.A. certification. He works on the comparison between
discrete renormalization group methods that we have been using and
continuous limits of these methods used by other authors. He has been
supported partially as a T.A. and partially as a R.A..

Summer school: Daping DU and Alan Denbleyker, attended the
International Summer School on Lattice QCD and its applications, at
the University of Washington Seattle, August 8 - 28, 2007 and gave talks.
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Computational Facilities

In 2003, we built a 16 node cluster that has allowed us to create large
numbers of gauge configurations on lattices with up to 164 sites and to
work on scalar field theory in various dimensions. Due to several recent
hardware failures, this cluster will be phased out.

We have built a new cluster with 8 single CPU nodes with 3.2 GHz Pentium4
processors and Gigabyte motherboards with a build-in fast ethernet card. It
is now being reconfigured with Oscar 5.0.

Multiprocessors computers have been build commercially and are low
maintenance items. We would like to try 4 CPU units to use for distributed
calculations. This type of workstation costs approximately 5,000 dollars.
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Work in progress

• New methods to find the zeros of the partition function in the complex
β plane (Fisher’s zeros) for Lattice Gauge Theory.

• New methods to control the nonlinear effects in FSS for Binder Cumulants
at large volume.
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Motivations to study the zeros of the partition function

Lattice QCD in its simplest form (quenched with a Wilson’s action) is
characterized by two regimes: the strong coupling (low β) regime where
confinement is obvious and the weak coupling (large β) regime where
asymptotic freedom holds. We expect no phase transition on the real β
axis, unlike Ising models where the zeros of the partition function pinch
the real axis of the complex inverse temperature at βc at infinite volume.
These zeros in the complex β plane are called Fisher’s zeros. However,
such lattice gauge theories can be seen as “close” to other theories (at
non-zero temperature or with a positive adjoint coupling) that have a phase
transition. The zero temperature lattice gauge theory with a Wilson action
should have Fisher zeros close to the real axis but these zeros should not
pinch the real axis in the infinite volume limit. This is a plausible explanation
for the unexpected behavior of the weak coupling expansion of the average
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plaquette P for SU(3). Standard methods of series analysis suggest a
singularity on the real axis, namely P ∝ (1/5.74 − 1/β)1.08. This would
imply a peak in the second derivative of P with a height increasing with the
volume, which we have not seen at zero temperature. The vicinity of the
critical point in the fundamental-adjoint plane, suggests the approximate
mean field behavior

−∂P/∂β ∝ ln((1/βm − 1/β)2 + Γ2) , (1)

Fits of the series with such parametric form yield the approximate values
βm ≃ 5.78 and Γ ≃ 0.006 (i.e Im β ≃ 0.2). Values of Γ which are too
large (too small) would produce modulations of the coefficients (peaks in
the derivatives of P ) which are not observed. This yields the bounds for
SU(3) of 0.001 < Γ < 0.01. This suggests zeros of the partition function
in the complex β plane with 0.03 ≃ 0.001β2

m < Imβ < 0.01β2
m ≃ 0.33.
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It is quite common that the difference between a physical quantity and
its perturbative expansion is of the form exp(−K/g2). For the average
plaquette, the issue is obscured by the Fisher zeros and the factorial growth
necessary to get an envelope in the accuracy versus coupling at successive
order is not reached at the order where the perturbative expansion is
available. Larger order extrapolation are necessary. Two models have been
considered. These two extrapolations seem consistent with the behavior

P (β) − Ppert.(β) ≃ C(a/r0)
4 (2)

with a(β) defined with the force scale with r0 = 0.5 fm, and Ppert

appropriately truncated. For large β this has the desired exponential form.
Attempts have been made in the past to relate C to the so-called gluon
condensate.
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Figure 1: Natural logarithm of the absolute value of the difference between
the series and the numerical value for order 1 to 30 for quenched QCD
with the dilogarithm model. As the order increases, the curves get
darker. The long dash curve is ln(0.65 (a/r0)

4). The solid curve is

ln(3.1 × 108 × (β)204/121−1/2e−(16π2/33)β)
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Searches for zeroes of the partition function

We searched for the zeros of the partition function in the complex β
plane by using the reweighting method. The bounds in the 1/β plane
discussed above imply that the the location of the zero closest to the
positive real axis in the β plane should have an imaginary part between
0.03 and 0.3 when the volume becomes large enough. If the imaginary part
is larger than K

√

ln(Nconf.)/V with Nconf. the number of configurations
and K a calculable function of the real part of order 1 varying slowly, the
determination of the zeroes becomes inaccurate. For small volume (44),
we were able to establish the existence of a zero clearly within the radii of
confidence of various reweighting near β = 5.55 ± i0.1 in agreement with
results on 4L3 lattices. For larger (64 and 84) lattices, we have not found
zeroes clearly within the radii of confidence. Up to now, everything seems
consistent with the bound |Imβ| > 0.03.

21



5.55 5.6 5.65 5.7 5.75 5.8 5.85

0.01

0.02

0.03

0.04

0.05

Figure 2: Zeroes of the partition function in the complex β plane for a 84

lattice. The dots correspond to distinct bootstraps and the solid lines to
the radii of confidence.
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Approximate models

The nice regularities of the difference with the Gaussian approximation (for
small lattices) for the distribution of action S suggests a parametriztion of
the form

P (S) ∝ exp(−λ1S − λ2S
2 − λ3S

3 − λ4S
4) (3)

The unknown parameters were determined from the fist four moments using
Newton’s methods and also by χ2 minimization. Very good agreement
between the two methods was found on 44 lattices. This method allows us
to go beyond the region of confidence of MC reweighting.
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Figure 3: Zeros of the real (crosses) and imaginary (circles) using MC on a
44 lattice, for SU(2) at β = 2.18 and SU(3) at β =5.54. The smaller dots
are the values for the real (green) and imaginary (blue) parts obtained from
the 4 parameter model. The MC exclusion region boundary for d = 0.15 is
represented by boxes (red).
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Figure 4: Zeros of the real (crosses) and imaginary (circles) using MC, for
SU(2) at β = 2.27 and 2.28 on a 4 × 63 lattice. The smaller dots are the
values for the real (green) and imaginary (blue) parts obtained from the 4
parameter model. The MC confidence region is limited by red boxes. Note
the consistency of the intersections for the two reweightings.
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Figure 5: Zeros of the real (crosses) and imaginary (circles) using MC for
SU(2) on a 64 lattice at β = 2.18. The small dots are the values for
the real (green) and imaginary (blue) parts obtained from the 4 parameter
model. D. Du is working on saddle point methods to deal with the noise
that appears for Imβ > 0.16.
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Recent work on finite size scaling

In the study of the finite temperature phase transition of QCD, it is
important to be able to localize precisely βc and identify the universality
class of the transition. This information can be obtained from the study of
the so-called Binder cumulant

B4 = <m4>
<m2>2

of the Polyakov’s loop. In recent studies of Binder cumulants, I noticed
that the determination of the intersection of curves at different volumes
using linear fits may lead to inaccuracies. I studied the problem for the
hierarchical Ising model where the statistical errors are negligible and found
that if the β interval scale is too broad, the nonlinear effects are important.
These effects can be estimated by studying the collapsed data (B4 versus
κN1/ν with κ ≡ (β − βc)/βc).
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Figure 6: B4 versus β, and κN1/νfor N = 4, 8, 16, 32, 64 and 128 for the
Ising hierarchical model.
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B4(β, N) ≃ B4(βc,∞)+ f1κN1/ν + f2κ
2N2/ν +(c0 + c1κN1/ν)N−ω (4)

In the linear approximation (f2 = c1 = 0), FSS predicts the intersection
bewteen B4(β, N) and B4(β, N ′) denoted (β⋆(N, N ′), B⋆

4(N, N ′))

β⋆(N, N ′) = βc + βc(c0/f1)L(N, N ′)

B⋆
4(N, N ′) = B4 + c0M(N, N ′) (5)

L(N, N ′) = (N−ω − N ′−ω)/(N ′1/ν − N1/ν)

M(N, N ′) = (N−ω−1/ν − N ′−ω−1/ν)/(N ′1/ν − N1/ν) (6)

The nonlinear coefficient f2 can be determined with a pencil and a ruler on
a collapsed data graph.
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Figure 7: B4 versus κN1/ν, for N = 32 and 64 for the Ising hierarchical
model. A ”pencil and ruler” method yields f1 ≃ −0.24 and f2 ≃ −0.045
very good agreement with another independent estimate.
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Fixed interval versus shrinking interval procedures

For each pair of linear sizes (N,N ′), it is possible to determine the
intersection (β⋆(N,N ′), B⋆

4(N,N ′)) of the corresponding linear fits. These
empirical values are plotted versus the calculable values L(N, N ′) and
M(N, N ′). However, if we increase the volume while keeping the κ interval
constant, the accuracy of the extrapolations degrades rapidly (see Figs.).

We propose a shrinking interval procedure where the value of κ is
restricted in such a way that

|κ|N1/ν < ǫf1/f2 . (7)

as N increases. This procedure gives excellent results when N increases.
This is illustrated for ǫ = 0.05 in the following figures.
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Figure 8: Empirical values of β⋆(N,N ′) versus L(N, N ′) for the two
methods. The solid line is the best linear fit. The dash line is the exact
behavior.
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Figure 9: Empirical values of B⋆
4(N, N ′) versus M(N, N ′) for the two

methods. The solid line is the best linear fit. The dash line is the exact
behavior.
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